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Abstract— In this paper a new TLM model is presented for
solving two-dimensional electromagnetic field problems. The new
model possesses the same dispersion relation as a fourth-order

in space and second-order in time central-finite-difference al-

gorithm. The stability criterion of the TLM model (given in

terms of permissible values for the admittance of the permittivity

stub) is provided. Investigation of the propagation characteristics
indicates the benefits of fourth-order spatial dkcretization, es-

pecially for modelling dielectric media. The improved dispersive
properties of the fourth-order models make them attractive can-
didates for the analysis of electrically large (and inhomogeneous)
problems. The scattering and transfer events for the new model
are presented as well as results from numerical experiments.
The improved computational efficiency of the new fourth-order

accurate model in terms of both memory storage and computation

time (as compared to the original second-order TLM algorithm)
is demonstrated.

I. INTRODUCTION

T HE Transmission-Line Matrix (TLM) method is capa-

ble of providing an approximate solution to the time-

dependent form of Maxwell’s equations in arbitrary media

[1], [2]. For this reason the method is considered to be in the

same class as time-domain finite-difference and finite-element

methods. The finite-difference and finite-element methods are

general techniques applicable to the numerical solution of

differential equations [3]. Both methods allow flexibility in

the geometrical properties of the numerical grid and the

order of accuracy of the governing approximation. The finite-

difference method allows various spatial arrangements of the

difference approximations and different orders of accuracy.

The finite-element method allows various element shapes and

element expansion functions of varying order. In two previous

papers [4], [5], TLM models have been presented on two

types of triangular grids: an equilateral triangular grid in

[4], which is referred to as the hexagonal TLM model, and

an isosceles triangular grid in [5] which is referred to as

the spatially weighted TLM model. Both the hexagonal and

spatially weighted models indicate the ability of the TLM

approach to make use of numerical grids that are different

from the traditional rectangular approach. In this paper the

Manuscript received October 11, 1993; revised May 20, 1994. This work
was supported by the Natural Sciences and Engineering Research Councd of
Canada and MICRONET.

N. R. S. Simons was with InfoMagnetics Technologies Corporation, Win-
nipeg, Manitoba, Canada. He is now with the Directorate of Antennas and

Integrated Electronics, Communications Research Centre, Ottawa, Ontario,
Canada.

A. Sebak is with the Department of Electrical and Computer Engineering,

University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
IEEE Log Number 9407303.

extension of the original second-order accurate TLM model to

achieve fourth-order spatial approximation is presented.

Numerical models for wave propagation represent a dis-

cretized medium that is both dispersive and anisotropic, i.e.,

the propagation velocity in the numerical mesh depends on

both the frequency content of the signal and the direction of

propagation. This undesired effect is referred to as velocity

error and is determined from the dispersion relation for the

particular model. Velocity error is one possible source for

errors that may arise in the practical application of the finite-

difference, finite-element, or TL,M methods. The benefit of

the models presented in [4] and [5] is that approximate

numerical isotropy is obtained. In [4] an error-correction

procedure is presented for reducing dispersive errors when

approximate numerical isotropy is achieved. The fundamental

accuracy of all three models is second-order in both space

and time. Only the number, spatial orientation, and relative

weighting of the difference approximations are distinct. While

the previously developed models investigate improvements to

the anisotropy of the numerical model, the purpose of the

present investigation is to investigate possible improvements

to the frequency dependence of the numerical model through

extension of the original second-order algorithm to achieve

fourth-order spatial accuracy.

The present investigation makes use of the dispersive equiv-

alence of TLM and finite-difference methods previously de-

scribed in [4]–[6]. A dispersive equivalence exists between

two numerical methods if both possess identical dispersion re-

lations. Dispersive equivalence does not involve the definition

of field quantities, operation of the algorithm, or applica-

tion of boundary conditions. For existing two-dimensional

TLM models (the original rectangular [7], the hexagonal [4],

and the spatially weighted model [5]), a dispersive equiva-

lence exists with a second-order in time and second-order in

space central-difference approximation of the two-dimensional

wave equation. The differences between the three models

is the manner in which the second-order finite-difference

operator is applied to the spatial derivatives. The application

of higher-order approximations to time-domain differential-

equation based numerical methc,ds (either finite-difference or

finite-element) has received limited attention. Fang and Mei

[8], and Deveze et al. [9] have investigated the use of higher-

order accurate finite-difference algorithms.

In the following section a fourth-order in space and second-

order in time finite-difference algorithm is presented. The

dispersion relation and stability criteria for this algorithm

are derived. In Section III, the fourth-order in space and
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second-order in time TLM model is presented. This model

is synthesized directly from the finite-difference algorithm.

The dispersion relation for the TLM model is derived and

its equivalence with the finite-difference dispersion relation

is discussed. In Section IV, the propagation characteristics of

the fourth-order in space and second-order in time algorithms

are evaluated and compared to those of the original TLM

model. The results indicate the superior performance of the

fourth-order models for the modelling of dielectric media. The

scattering and transfer events required for the practical imple-

mentation of the TLM model are presented in Section V, as

well as numerical examples presented for validation. In Section

VI the computational benefits of fourth-order spatial discretiza-

tion, in terms of cpu time and memory storage, are provided.

II. FINITE-DIFFERENCE ALGORITHM

In this paper, the finite-difference algorithms and the TLM

models considered provide approximate solutions to the two-

dimensional wave equation,

i92E 82E 1 82E

8X2—+~= C2 (W2
(1)

where E is the .z directed electric field distribution (E =

E(3, y, t)), and v is the propagation velocity. Consider the

discretization of (1) using fourth-order centm-difference ap-

proximations in space and a second-order central-difference

approximation in time, to yield

(-E’(z + 2A1, y) + 16E’(z + Al, y) - 30E’(z, y)

+ 16E’(z – A1.g) – E’(z – 2AZ, y))/12(Al)2

+ (–Et(z, y + 2A1) + 16Et(z, g + Al) – 30Et(z, y)

+ 16E’(z, y – Al) – E’(z, y – 2Al))/12(Al)2

1 E’+A’(z, y) - 2Et(r, y) + E’-A’(z, y)—
U2 (At)’

(2)

where Al is the grid size in the x and y directions, and At

is the time step. Following [10], the dispersion relation of the

finite-difference algorithm (2) is,

– sin2(/3*~1 cos ~) – sin2(~*Al sin g5)

‘16sin2(D*A~w6sin2(p*A:”4)
12A12

()

LIJm
sin2 —

v2At2 2
(3)

Equation 3 describes the fundamental manner in which plane

waves propagate through a finite-difference mesh of infinite

extent. Given the spatial At and temporal discretization M,

respectively, frequency of excitation w, direction of propaga-

tion ~, the numerical phase constant /3’ can be obtained from

(3). The value of /3’ can be compared to the exact physical

phase constant ,6’ to determine the amount of velocity error.

The stability criterion for the spatially fourth-order finite-

difference algorithm determined using the Von Neumann

method [11] is

(4)

The maximum allowable Courant number for (2) is /(3/8),

where the Courant number is defined as vAt/Al [10].

The Yee finite-difference time-domain algorithm [12], [13]

is obtained from discretization of Maxwell’s curl equations

using second-order central-difference approximations in both

space and time. The Yee algorithm can be re-written in terms

of only the electric field values at even space and time steps.

In two dimensions the equivalent algorithm in terms of only

electric field values is expressed as,

E’(x + Al, y) – 2Et(x, y) + E’(z – Al, g)

(A1)2

+ E’(z, y + Al) – 2Et(x, y) + E’(x, y – Al)

(A1)2

1 E’+A’(x, y) – 2E’(Lx, Y) + E’-At(x, y)—_— (5)
V2 (M)2

The memory storage requirements of the fourth-order in space

and second-order in time algorithm (2) and the second-order in

both space and time algorithm (5) are identical. However, the

fourth-order in space and second-order in time algorithm (2)

requires more computation per time step than the second-order

algorithm (5).

III. SYNTHESIS OF TLM MODEL

The spatially fourth-order TLM model is synthesized di-

rectly from the finite difference algorithm (2). The synthesis

closely follows that of the spatially weighted TLM model [5].

The propagation velocities of the elemental transmission lines

are selected to mimic the propagation of information within

the finite-difference algorithm, and the intrinsic impedances

of the elemental transmission lines are selected to provide

appropriate weighting between the analogous finite-difference

operators.

The fourth-order central-difference operator can be ex-

pressed in terms of two second-order operators,

(6)

One operator has a weight 4/3 and operates on a lAl grid:

the other has a weight – 1/3 and operates on a 2A 1 grid.

The spatially fourth-order TLM model is constructed from

the interconnection of two original models, one with a mesh

spacing of Al, the other with a mesh spacing 2A1. A mesh

of fourth-order TLM nodes is provided in Fig. 1, and an

individual node is provided in Fig. 2. The required weight-

ing is accomplished by the different intrinsic impedances

(Zl for elemental transmission lines 14 and – 1621 for

elemental transmission lines 5–8), and preservation of the

speed of information transfer is accommodated using dif-

ferent propagation velocities (v1 for elemental transmission

lines 14 and 2vl for elemental transmission lines 5–8).

At all nodal locations, eight elemental transmission lines

intersect. These lines connect a node (nAl, mAl) to nodes
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Fig. 1. Mesh of fourth-order TLM nodes.
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((n + l) Al, m,Al),((n + 2)A1, mAl), (nA/, (m + l)A1), and

(nAl, (m + 2A1), where n and m are integers describing

an arbitrary spatial location in the mesh. Essentially, nodes

separated by a distance Al (in the z and y directions) are

directly connected by an elemental transmission-line of in-

trinsic impedance Zl and propagation velocity WI. Nodes

separated by a distance 2A1 (in the x and y directions)

are directly connected by an elemental transmission-line of

intrinsic impedance – 16ZZ and propagation velocity 2VZ. As

presented in [5], two permittivity stubs are used. One is of

length A1/2, with propagation velocity Vl, and admittance

Yo/Zl; the other of length Al, with propagation velocity 2vl,

and admittance –Y. / 1621. The complete fourth-order TLM

node, with a description of the electrical properties of the

elemental transmission lines, is provided in Fig, 2.

Following the procedure described in [14] the dispersion

relation of the fourth-order TLM model is given by,

– sinz (P* Al cos ~) – sin2 (~” Al sin ~)

+ 16sin2
(’*A~’)+16sin2(’*A~’)

= (30+:y0)sin2(%
(7)

Expression 7 describes the fundamental manner in which plane

waves propagate through an infinite mesh of fourth-order TLM

nodes.

Several investigations regarding the algorithmic equivalence

of TLM and finite-difference methods have been performed

[15]: partial algorithmic equivalence of the three-dimensional

expanded TLM model with the three-dimensional Yee finite-

difference time-domain algorithm [15]; partial algorithmic

equivalence of the original two-dimensional TLM model with

the two-dimensional Yee algorithm [16]; and complete al-

gorithmic equivalence of the original two-dimensional TLM

model and the three-dimensional symmetric-condensed TLM

model with new finite-difference time-domain algorithms [17].

In [4]–[6] dispersive equivalences of the original-rectangular,

hexagonal, and spatially weighted TLM models to second-

order (in both space and time) finite-difference algorithms are

provided. Both types of equivalence (algorithmic and disper-

sive) help to establish the order of accuracy of a given TLM

3

~1

7

—4
Al

91
\

10

2A1

V$s = Vlo = 2V1 Z~.g= -16ZI , Zlo = -16Z&/Y0

Fig. 2. An individual fourth-order TLM node with permittivity stubs for-
modelling an arbitrary dielectric material.

model through equivalence with a specific finite-difference

algorithm.

Consider a mesh of fourth-order TLM models with a specific

value of perrnittivity stub Y.. If the finite-difference algorithm

(2) is operated such that Al and At satisfy,

r–-

24 Al
v. ——

60+ 15% At
(8)

(3) and (7) are identical, and therefore the fourth-order finite-

difference algorithm and TLM model possess identical disper-

sion relations. From the finite-difference stability criterion (4),

the permissible range of values for the stub admittance Y. (the

stability criterion for the fourth-order TLM model) is given by,

(9)

Selecting Y. = 4/15 to represent a free-space medium, the

relationship between the permittivity value and the relative

dielectric constant of the medium modelled by a mesh of

fourth-order nodes is,

60+ 15%

‘“=—64
(lo)

For certain positive stub values (i.e., O < YO < 4/15) the

fourth-order model is unstable. This instability for a range of

positive Y. is unique to the fourth-order model. All previously

investigated second-order algorithms [4], [5], [7] are stable for

Yo > 0.

IV. EVALUATION OF PROPAGATION CHARAC~RISTICS

In Fig. 3, the propagation characteristics of the original

TLM model [7] and the spatially fourth-order model are

compared for propagation along a coordinate direction. The

two curves are provided at the upper limit of stability (i.e.,

Y. = O for the original algorithm and Y. = 4/15 for

the fourth-order algorithm). Two benefits of the fourth-order

model are evident. The first benefit is the improved accuracy
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Fig. 3. Velocity error u*/vversus Al/A fortheorigirrat model [7] and the

spatially foorfh-order model for propagation along a coordinate direction (both

algorithms operated at their respective stability limits)

of the fourth-order model. The second benefit is the increase

in cut-off frequency provided by the fourth-order model.

The propagation characteristics of the fourth-order model

display different behavior than the second-order models. The

second-order models [4], [5], [7] simulate amediumin which

the propagation velocity is too slow, v*/v < 1.0. At the

limit of stability and for fine spatial discretization, the fourth-

order model simulates a medium in which the propagation

velocity is too fast, v“ /v > 1.0, and for frequencies near

cut-off, the fourth-order model simulates a medium in which

the propagation velocity is too slow. For propagation along a

mesh axis, the accuracy of the fourth-order model is always

superior to the original model.

To gain more insight into the relative performance of the

original and fourth-order algorithms, consider the following

measure of error for characterizing the various algorithms:

E(;)=+fjo(;)Q-l (11)
A

The value of Ed (A1/J) will provide a measure of the disper-

sive errors at a given discretization (A1/A) averaged over all

directions of propagation. Therefore, Ed does not provide in-

formation regarding the anisotropy of the model. This measure

is perhaps more relevant for general problems (in which wave

propagation takes place in a variety of different directions)

rather than investigating the propagation characteristics for

specific directions of propagation. Also, note the normalization

factor and the upper limit of the summation can be reduced

from 360° to 90° due to the rotational symmetry of the models

considered in this paper.

In Fig. 4, the values of Ed are provided for the original

and fourth-order models versus AZ/~. This figure indicates

that for A1/A ~ 0.1875 the original algorithm possesses a

slightly lower value of Ed than the fourtl-order algorithm.

This unexpected result is due to the perfect propagation that

occurs in the original algorithm for propagation diagonally

through the mesh. In Fig. 5, the best and worst case values

of I(v” /v) – 1I are provided versus Al/A. The value for

Ed can be approximately considered as the average between

these minimum and maximum values of I(v* /v) – 1I. Fig. 5

indicates that the maximum value of I(v” /v) – 1I for the
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Fig. 4. Error Ed versus Al/~ for the original and fourth-order TLM models
(both algorithms operated at their respective stability limits).
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Fig. 5. Minimum and maximum values for I(v’ /v) – 1 I versus A1/A for the

original and fourth-order TLM models. The minimum and maximum values of
I (v*/t,) – l] for the original algorithm occur for propagation in the @ = 45°

and @ = 0° directions. The minimum and maximum values of I(v’ /v) – 1 I for
the fourth-order algorithm occur for propagation in the 4 = 0° and @ = 45°
dkections.

original model (which occurs for propagation along one of

the coordinate directions) is larger than the maximum value

for the fourth-order algorithm (which occurs for propagation

diagonally through the mesh). However, the minimum value

of I(v* /v) — 1I for the original algorithm is zero (because

this algorithm provides dispersionless propagation with infinite

cut-off for @ = 45° ), and therefore superior to the direction

with the minimum value of I(v* /v ) – 1I for the fourth-

order algorithm. Since Ed is approximately the average of the

minimum and maximum values of I(v” /v) – 1I, Figs. 4 and 5

indicate that the original algorithm is slightly better than the

fourth-order algorithm for Al/) s 0.1875. The fourth-order

algorithm is superior for Ai/A s 0.1875.

In Fig. 6, the vahtes of Ed for the original and fourth-order

algorithms are compared for the case of modelling a dielectric

material of CT = 4. These results indicate superior performance

of the fourth-order algorithm. In fact, for increasing values of

&r, the dispersive errors of the fourth-order algorithm decrease

(for small values of A.1/~). In Fig. 7, Ed is provided versus

Al/}d for ~. = 1, 2, 10, and 25. The results of this figure

indicate that for typical practical discretizations A1/~ <0.10

the value of Ed decreases with increasing &r. This aspect of the

behavior of the fourth-order model is distinct from the second-
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for the case of modelling a dielectric material of ~, = -1.

order models. In the equivalent finite-difference algorithms, the

effect of increasing e. is equivalent to decreasing the Courant

number. For the second-order algorithms, it is always desirable

to run simulations at (or very close to) the Courant number,

where the optimal propagation characteristics are obtained.

This is not the case for the fourth-order algorithm presented in

this paper. For this reason it may be desirable to renormalize

the algorithm for a value of Yo > 4/15 to represent a free-

space medium such that the optimal propagation characteristics

of the fourth-order algorithm can be exploited.

In Fig. 8 the propagation characteristics of the original

TLM model [7] and the spatially fourth-order model are

compared for propagation along a coordinate direction in a

medium with S. = 10. These curves indicate the superior

performance of the fourth-order algorithm for the modelling

of dielectric media (for a specific direction of propagation).

The results indicate the fourth-order algorithm produces less

than one percent velocity error for A1/A <0.2. Velocity errors

compound for waves which propagate over electrically large

distances due to phase errors, which increase linearly with the

distance travelled. Therefore, the potential benefits of fourth-

order algorithms may become important for the analysis of

electrically large problems.

V. IMPLEMENTATION—SCATTERING AND TRANSFER EVENTS

TLM algorithms operate by simulating the progression

of voltage pulses as they are scattered through the mesh

of transmission lines. The implementation of the spatially

fourth-order model follows the same procedure as all other

TLM models, i.e., scattering of incident voltage pulses at the

junction of transmission lines and the transfer of reflected

voltage pulses to adjacent nodes [1], [2].

The nodal scattering matrix for the spatially fourth-order

TLM model is assembled by examining the reflection and

transmission coefficients of a voltage pulse on each of the

ten elemental transmission lines. For example, a voltage pulse

approaching the transmission-line junction on branch 1 (a

22 transmission-line) sees a parallel connection of three Z1

lines, four – 1621 lines, one Z1/Yo line, and one – 16Z1/%

line. The corresponding reflection coefficient (describing the

magnitude of the voltage pulse reflected from the transmission-
line junction back onto line 1) is,

~
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Fig. 7. Error Ed versus Al/A for the fourth-order TLM model for modelling
a dielectric material of c~ = 1,’2, 10, and 25.
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The corresponding transfer coefficient (describing the mag-

nitude of the voltage pulse transmitted to the other nine

transmission-line branches) is,

—.— 32
y’=1+1’=

60+ 15%

Following the above procedure, the complete nodal scattering

matrix cm be assembled:

—.

abbbddddfh -

babbddddfh

bbabddddfh

bbbaddddfh

bbbbcdddfh

bbbbdcddfh

bbbbddcdfh

bbbbdddcfh

bbbbddddeh

bbbbddddfg.
12)
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where

~=_28+15Yo

60+ 15%

b=
32

60+ 15%

62+ 15%

C=–60+15Y0

d=–
2

60+ 15%
17% – 60

e = 60 + 15%

fz
32%

60+ 15%

60+ 17%

‘=–60+15Y0

h=–
2%

60+ 15%

The transfer event for the fourth-order model is:

w~(i,j) = ?$(z, j – 1) v;(i, j) = ‘o~(i – l,j)

w;(i, j) = Vy(i,j + 1) v~(i)j) = ‘u;(i + l,j)

w;(i, j) = V;(i, j – 2) v~(i, j) = w:(i – 2,j)

?$(z,j) = v;(i, j + 2) ‘o~(i, j) = v:(i + 2,j)

v~(i, j) = v;(i, j) V;o(i, j) = v~o(i, j)

where (i, j) denote discrete (x, y) coordinates.

In Section II it was noted that increasing the spatial accuracy

from second- to fourth-order did not require an increase in

memory storage requirements for the finite-difference algo-

rithm. This is not true for the TLM model. The fourth-order

TLM model requires twice the memory storage of the second-

order TLM model. For both the fourth-order TLM and finite-

difference algorithms, increasing the spatial accuracy from

second to fourth-order requires more computation per time

step.

The performance and stability of the spatially fourth-order

model has been verified for various wave propagation prob-

lems. In Fig. 9, the improved propagation characteristics of

the spatially fourth-order model are demonstrated. The fourth-

order model and the original TLM model [7] are applied to

the simulation of a Gaussian-pulsed plane wave. An effective

one-dimensional simulation in the % direction is created by

applying magnetic walls along the minimum and maximum

y boundaries. The fourth-order model preserves the shape of

the pulse more accurately than the original model. As well,

the fundamental difference in the propagation characteristics

provided in Fig. 3 is evident. The Gaussian pulse contains

significant energy from A1/A =0 to approximately 0.250.

The dispersion caused by the original model is evident in the

trailing edge of the pulse (i.e., certain components of the wave

propagate too slow). The dispersion caused by the fourth-order

model is evident in the leading edge of the pulse (i.e., certain

components of the wave propagate too fast). This example

illustrates the behavior described in Fig. 3.

In Fig. 10, the improved propagation characteristics of the

fourth-order model for modelling dielectric media are demon-

strated. The original and fourth-order models are applied to the

2

I
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––––- FOURTHGRDER f,eewsce, 1. 9SAt

FOURTH-3RDER f,ee-qmce, t . 170N

4J.52~75

x - direction f,A 1)

Fig. 9. Simulation of a Gaussian-pulsed plane wave by a mesh of original
nodes [7], and a mesh of spatially fourth-order nodes.

I ,. I

-0.5: 1 1 I
250 275 300 325 350 375

x - direction (A1)

Fig. 10. Simulation of a Gaussian-pulsed plane wave in a medium with

c? = 10 by a mesh of original nodes [71, and a mesh of spatially fourth-order
nodes.

simulation of a Gaussian-pulse plane wave in a medium with

Er = 10. The results indicate the superior performance of the

fourth-order model. The waveform is significantly distorted

by the original model and only slightly distorted by the

fourth-order model. The simulated results of Fig. 10 verify

the behavior displayed in Fig. 8.

VI. COMPUTATIONAL EFFICIENCY

The dispersive analysis presented in Section IV, and the one-

dimensional propagation examples provided in the previous

section indicate the superior accuracy of the new fourth-order

model. These examples do not, however, demonstrate the com-

putational advantage of the new model in terms of cpu time or

memory storage. In this section, the improved computational

performance of the fourth-order model is demonstrated by

example.

As mentioned, the computational advantage of the new
fourth-order model is a decrease in dispersive errors. However,

the fourth-order model also possesses three computational

disadvantages. The first computational disadvantage is the

increased memory storage per cell. In Section V it was noted

that the fourth-order TLM model requires double the memory

storage of the original algorithm per cell. The second com-

putational disadvantage is the increased computation required
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per cell, due to increased algorithmic complexity (more mul-

tiplications and additions). Our simulations indicate that the

new fourth-order model requires approximately 2.5 times more

cpu time per cell as compared to the original model (a similar

comparison for the equivalent finite-difference algorithms has

not been performed). The third computational disadvantage

is that the fourth-order model possesses a smaller maximum

allowable time step (see (8) and (9)) as compared to the

original model [7]. Therefore, more time steps are required

to achieve the same effective duration of computation. The

following examples illustrate that the computational advantage

of increased accuracy allows for sufficiently coarse discretiza-

tion such that the three computational disadvantages discussed

above are offset.

Consider an arbitrary two-dimensional problem of a given

spatial size that requires simulation for a given duration

of time. In this example, the suggestion made in Section

IV is followed, and the free space region is normalized to

possess a stub value of YO = 13,067 (which would usually

correspond to a relative permittivity ET =4.0, see (10)). This

specific renormalization value is selected as an example and

should not be considered as optimal. For this stub value, the

maximum allowable time step permitted by the fourth-order

model is 2.31 times smaller than that permitted by the original

model operated at the upper limit of stability. Consider the

operation of the second-order algorithm such that the spatial

discretization (for the highest desired output frequency) is 15

Al/A. For this discretization, the original model provides an

Ed value of 0.1845. To obtain the same value of Ed, the

new fourth-order algorithm requires a discretization of only

5.64Al/A For a two-dimensional region, the original model

requires (15.0/5.64)2 = 7.07 times more cells to achieve the

same accuracy. Taking into account that the fourth-order model

requires twice as much memory storage, the new fourth-order

model requires 3.5 times less memory than the second-order

algorithm. In terms of cpu time, taking into account that the

fourth-order algorithm requires 2.31 x 2.5 = 5.8 times more

cpu time per cell (due to the restricted At requirement and the

increase in algorithmic complexity), the fourth-order algorithm

requires approximately 1.2 times less cpu time than the second-

order algorithm. Only a slight advantage is realized for this

example in terms of cpu time, but a significant advantage in

memory storage.

Now consider a problem involving a free-space region and

a dielectric region with ST =10. The same order of accuracy

is desired in the dielectric region as was obtained in the

free-space region of the above problem (i.e., Ed =0.1845).

To achieve this accuracy within the dielectric medium with

the original model requires a discretization 24.9 Al/J. To

achieve the same accuracy, the fourth-order algorithm re-

quires a discretization of 6.98 A1/~. Over a two-dimensional

region 12.7 times more cells are required by the second-

order algorithm to achieve the same accuracy provided by the

fourth-order algorithm. Therefore, the fourth-order algorithm

requires 6.4 times less memory and 2.2 times less CPU time

than the second-order algorithm for equivalent accuracy. Both

examples indicate a computational advantage provided by the

new fourth-order model.

VII. DISCUSSION1CONCLUSION

In this paper a spatially fourth-order version of the original

two-dimensional TLM algorithm has been presented. The

fundamental accuracy of the spatial approximation has been

increased from second to fourth-order. The same improvement

is possible for the hexagonal [4] and spatially weighted TLM

models [5] to obtain spatially fourth-order versions. The

accuracy of the temporal discretization remains second-order.

The concept of a stability criteria has been introduced to the

TLM method and is based on the permissible values for the

stub admittance Y..

As discussed in Section III, the fourth-order TLM model

is constructed with elemental transmission lines with nega-

tive characteristic impedances. Although physically unrealis-

tic, these negative impedance tmnsmission lines are required

to obtain the appropriate weighting present in the equivalent

finite-difference algorithm. The negative impedance transmis-

sion lines could have been avoided through the use of bi-

directional impedance inverters (which would require infinite

bandwidth) to interface lines 1-4 and 9 with lines 5–8 and

10. The hi-directional impedance inverters would also be

physically unrealistic. These aspects of the fourth-order model

should not be a cause for concern since TLM models are used

as a simulation tool and their plhysical realizability is not an

issue.

Some unique properties of the fourth-order model have

emerged. For the modelling of clielectric material, the disper-

sive errors associated with the algorithm decrease for moderate

s, (also true for the equivalent finite-difference algorithm).

The improved dispersive properties of the fourth-order models

make them attractive candidates for the analysis of electrically

large (and inhomogeneous) problems.
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