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A Fourth-Order in Space and Second-Order
in Time TLM Model

N. R. S. Simons, Member, IEEE, and A. Sebak, Senior Member, IEEE

Abstract—In this paper a new TLM model is presented for
solving two-dimensional electromagnetic field problems. The new
model possesses the same dispersion relation as a fourth-order
in space and second-order in time central-finite-difference al-
gorithm. The stability criterion of the TLM model (given in
terms of permissible values for the admittance of the permittivity
stub) is provided. Investigation of the propagation characteristics
indicates the benefits of fourth-order spatial discretization, es-
pecially for modelling dielectric media. The improved dispersive
properties of the fourth-order models make them attractive can-
didates for the analysis of electrically large (and inhomogeneous)
problems. The scattering and transfer events for the new model
are presented as well as results from numerical experiments.
The improved computational efficiency of the new fourth-order
accurate model in terms of both memory storage and computation
time (as compared to the original second-order TLM algorithm)
is demonstrated.

1. INTRODUCTION

HE Transmission-Line Matrix (TLM) method is capa-

ble of providing an approximate solution to the time-
dependent form of Maxwell’s equations in arbitrary media
[1], [2]. For this reason the method is considered to be in the
same class as time-domain finite-difference and finite-element
methods. The finite-difference and finite-element methods are
general techniques applicable to the numerical solution of
differential equations [3]. Both methods allow flexibility in
the geometrical properties of the numerical grid and the
order of accuracy of the governing approximation. The finite-
difference method allows various spatial arrangements of the
difference approximations and different orders of accuracy.
The finite-element method allows various element shapes and
element expansion functions of varying order. In two previous
papers [4], [5], TLM models have been presented on two
types of triangular grids: an equilateral triangular grid in
[4], which is referred to as the hexagonal TLM model, and
an isosceles triangular grid in [S] which is referred to as
the spatially weighted TLM model. Both the hexagonal and
spatially weighted models indicate the ability of the TLM
approach to make use of numerical grids that are different
from the traditional rectangular approach. In this paper the
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extension of the original second-order accurate TLM model to
achieve fourth-order spatial approximation is presented.

Numerical models for wave propagation represent a dis-
cretized medium that is both dispersive and anisotropic, i.e.,
the propagation velocity in the numerical mesh depends on
both the frequency content of the signal and the direction of
propagation. This undesired effect is referred to as velocity
error and is determined from the dispersion relation for the
particular model. Velocity error is one possible source for
errors that may arise in the practical application of the finite-
difference, finite-element, or TLM methods. The benefit of
the models presented in [4] and [5] is that approximate
numerical isotropy is obtained. In [4] an error-correction
procedure is presented for reducing dispersive errors when
approximate numerical isotropy is achieved. The fundamental
accuracy of all three models is second-order in both space
and time. Only the number, spatial orientation, and relative
weighting of the difference approximations are distinct. While
the previously developed models investigate improvements to
the anisotropy of the numerical model, the purpose of the
present investigation is to investigate possible improvements
to the frequency dependence of the numerical model through
extension of the original second-order algorithm to achieve
fourth-order spatial accuracy.

The present investigation makes use of the dispersive equiv-
alence of TLM and finite-difference methods previously de-
scribed in [4]-[6]. A dispersive equivalence exists between
two numerical methods if both possess identical dispersion re-
lations. Dispersive equivalence does not involve the definition
of field quantities, operation of the algorithm, or applica-
tion of boundary conditions. For existing two-dimensional
TLM models (the original rectangular [7], the hexagonal [4],
and the spatially weighted model [5]), a dispersive equiva-
lence exists with a second-order in time and second-order in
space central-difference approximation of the two-dimensional
wave equation. The differences between the three models
is the manner in which the second-order finite-difference
operator is applied to the spatial derivatives. The application
of higher-order approximations to time-domain differential-
equation based numerical methods (either finite-difference or
finite-element) has received limited attention. Fang and Mei
[81, and Deveze et al. [9] have investigated the use of higher-
order accurate finite-difference algorithms.

In the following section a fourth-order in space and second-
order in time finite-difference algorithm is presented. The
dispersion relation and stability criteria for this algorithm
are derived. In Section III, the fourth-order in space and
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second-order in time TLM model is presented. This model
is synthesized directly from the finite-difference algorithm.
The dispersion relation for the TLM model is derived and
its equivalence with the finite-difference dispersion relation
is discussed. In Section IV, the propagation characteristics of
the fourth-order in space and second-order in time algorithms
are cvaluated and compared to those of the original TLM
model. The results indicate the superior performance of the
fourth-order models for the modelling of dielectric media. The
scattering and transfer events required for the practical imple-
mentation of the TLM model are presented in Section V, as
well as numerical examples presented for validation. In Section
VI the computational benefits of fourth-order spatial discretiza-
tion, in terms of cpu time and memory storage, are provided.

II. FINITE-DIFFERENCE ALGORITHM

In this paper, the finite-difference algorithms and the TLM
models considered provide approximate solutions to the two-
dimensional wave equation,

O*E  0°E 1 0%E
dz2 ' 9y ¢ Ot2
where £ is the z directed electric field distribution (E =
E(z,y,t)), and v is the propagation velocity. Consider the
discretization of (1) using fourth-order central-difference ap-

proximations in space and a second-order central-difference
approximation in time, to yield
(—E'(z + 2AlL,y) + 16E*(z + Al,y) — 30E*(z,y)
+16E(z — Aly) — E'(z — 2Al, 3/))/12(Al)2
+ (—E'(z,y + 2Al) + 16E*(z,y + Al) — 30E*(x,y)
+16E (z,y — Al) — E*(z,y — 2Al1)) /12(Al)?
_ 1B ey 2B @ y) T BT Ny )
v? (At)?

where Al is the grid size in the x and y directions, and At
is the time step. Following [10], the dispersion relation of the
finite-difference algorithm (2) is,

~ sin?(F* Al cos ¢) — sin?(8* Al sin @)
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Equation 3 describes the fundamental manner in which plane
waves propagate through a finite-difference mesh of infinite
extent. Given the spatial Al and temporal discretization A,
respectively, frequency of excitation w, direction of propaga-
tion ¢, the numerical phase constant G* can be obtained from
(3). The value of 3* can be compared to the exact physical
phase constant 5 to determine the amount of velocity error.
The stability criterion for the spatially fourth-order finite-
difference algorithm determined using the Von Neumann
method [11] is
NPNER

3 2 “4)

The maximum allowable Courant number for (2) is 1/(3/8),
where the Courant number is defined as vA¢/Al [10].

The Yee finite-difference time-domain algorithm [12], [13]
is obtained from discretization of Maxwell’s curl equations
using second-order central-difference approximations in both
space and time. The Yee algorithm can be re-written in terms
of only the electric field values at even space and time steps.
In two dimensions the equivalent algorithm in terms of only
electric field values is expressed as,

E'(z -+ Al,y) — 2E*(z,y) + Et(z — Al,y)
Ay
N E'(z,y + Al) — 2EY(z,y) + E(z,y — Al)
(B2
1 B a,y) — 2B (2, y) + B2 (2, y)
v (At)?

The memory storage requirements of the fourth-order in space
and second-order in time algorithm (2) and the second-order in
both space and time algorithm (5) are identical. However, the
fourth-order in space and second-order in time algorithm (2)
requires more computation per time step than the second-order
algorithm (5).

&)

—1;2

HI. SYNTHESIS OF TLM MODEL

The spatially fourth-order TLM model is synthesized di-
rectly from the finite difference algorithm (2). The synthesis
closely follows that of the spatially weighted TLM model [5].
The propagation velocities of the elemental transmission lines
are selected to mimic the propagation of information within
the finite-difference algorithm, and the intrinsic impedances
of the elemental transmission lines are selected to provide
appropriate weighting between the analogous finite-difference
operators.

The fourth-order central-difference operator can be ex-
pressed in terms of two second-order operators,

2f 4

1
e gDAlf - §D2Alf ©®

where,

fin+h)—2f(m) + f(n—h)
12

One operator has a weight 4/3 and operates on a 1Al grid;
the other has a weight —1/3 and operates on a 2A ! grid.
The spatially fourth-order TLM model is constructed from
the interconnection of two original models, one with a mesh
spacing of Al, the other with a mesh spacing 2Al. A mesh
of fourth-order TLM nodes is provided in Fig. 1, and an
individual node is provided in Fig. 2. The required weight-
ing is accomplished by the different intrinsic impedances
(Z; for elemental transmission lines 1-4 and —162; for
elemental transmission lines 5-8), and preservation of the
speed of information transfer is accommodated using dif-
ferent propagation velocities (v; for elemental transmission
lines 1-4 and 2v; for elemental transmission lines 5-8).
At all nodal locations, eight elemental transmission lines
intersect. These lines connect a node (nAl,mAl) to nodes

Dyf =
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Al

Fig. 1. Mesh of fourth-order TLM nodes.

((n £ )AL mAL,((n £ 2)Al, mAl), (nAl, (m £ 1)Al), and
(nAl,(m % 2Al), where n and m are integers describing
an arbitrary spatial location in the mesh. Essentially, nodes
separated by a distance Al (in the z and y directions) are
directly connected by an elemental transmission-line of in-
trinsic impedance Z; and propagation velocity v;. Nodes
separated by a distance 2Al (in the z and y directions)
are directly connected by an elemental transmission-line of
intrinsic impedance —167; and propagation velocity 2v;. As
presented in [5], two permittivity stubs are used. One is of
length Al/2, with propagation velocity v;, and admittance
Yo/Z;; the other of length Al, with propagation velocity 2w,
and admittance —Y,,/16Z;. The complete fourth-order TL.M
node, with a description of the electrical properties of the
elemental transmission lines, is provided in Fig. 2.

Following the procedure described in [14] the dispersion
relation of the fourth-order TLM model is given by,

— sin®(8* Al cos ¢) — sin?(B* Al sin ¢)

+ 16sin? (———*B*Al o8 ¢) + 16sin? <———5*N Siw)
2 2

_ (30 N ?Y(])sinz(%f) %

Expression 7 describes the fundamental manner in which plane
waves propagate through an infinite mesh of fourth-order TLM
nodes.

Several investigations regarding the algorithmic equivalence
of TLM and finite-difference methods have been performed
[15]: partial algorithmic equivalence of the three-dimensional
expanded TLM model with the three-dimensional Yee finite-
difference time-domain algorithm [15]; partial algorithmic
equivalence of the original two-dimensional TLM model with
the two-dimensional Yee algorithm [16]; and complete al-
gorithmic equivalence of the original two-dimensional TLM
model and the three-dimensional symmetric-condensed TLM
model with new finite-difference time-domain algorithms [17].
In [4]-[6] dispersive equivalences of the original-rectangular,
hexagonal, and spatially weighted TLM models to second-
order (in both space and time) finite-difference algorithms are
provided. Both types of equivalence (algorithmic and disper-
sive) help to establish the order of accuracy of a given TLM

Al | 2A1

2A1

Vig= Vo =V Z2,=2y ,Zy="7y[Yo
Z5_8= -16Z1 N ZlO = -16Z9_/Y0

Fig. 2. An individual fourth-order TLM node with permittivity stubs for-
modelling an arbitrary dielectric material.

Vsg = Vip = 2Vy

model through equivalence with a specific finite-difference
algorithm.

Consider a mesh of fourth-order TLM models with a specific
value of permittivity stub Yj. If the finite-difference algorithm
(2) is operated such that Al and At satisfy,

4 Al
Y=\ 60 + 15, At ®)

(3) and (7) are identical, and therefore the fourth-order finite-
difference algorithm and TLM model possess identical disper-
sion relations. From the finite-difference stability criterion (4),
the permissible range of values for the stub admittance Yj (the
stability criterion for the fourth-order TLM model) is given by,

4
> —
Yo > = ©

Selecting Yo = 4/15 to represent a free-space medium, the
relationship between the permittivity value and the relative
dielectric constant of the medium modelied by a mesh of
fourth-order nodes is,

60 -+ 15Y,
Y]

10)

For certain positive stub values (i.e., 0 < Yy < 4/15) the
fourth-order model is unstable. This instability for a range of
positive Yy is unique to the fourth-order model. All previously
investigated second-order algorithms [4], [5], [7] are stable for
YO Z 0.

IV. EVALUATION OF PROPAGATION CHARACTERISTICS

In Fig. 3, the propagation characteristics of the original
TLM model [7] and the spatially fourth-order model are
compared for propagation along a coordinate direction. The
two curves are provided at the upper limit of stability (i.e.,
Yy = 0 for the original algorithm and Yy = 4/15 for
the fourth-order algorithm). Two benefits of the fourth-order
model are evident. The first benefit is the improved accuracy
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Fig. 3. Velocity error v* /v versus Al/A for the original model [7] and the
spatially fourth-order model for propagation along a coordinate direction (both
algorithms operated at their respective stability limits)

of the fourth-order model. The second benefit is the increase
in cut-off frequency provided by the fourth-order model.

The propagation characteristics of the fourth-order model
display different behavior than the second-order models. The
second-order models [4], [5], [7] simulate a medium in which
the propagation velocity is too slow, v*/v < 1.0. At the
limit of stability and for fine spatial discretization, the fourth-
order model simulates a medium in which the propagation
velocity is too fast, v*/v > 1.0, and for frequencies near
cut-off, the fourth-order model simulates a medium in which
the propagation velocity is too slow. For propagation along a
mesh axis, the accuracy of the fourth-order model is always
superior to the original model.

To gain more insight into the relative performance of the
original and fourth-order algorithms, consider the following
measure of error for characterizing the various algorithms:

Al A
E —_— = — S -1
d()\) 360Z (v>é_l

$=0°

(11

The value of E4(Al/X) will provide a measure of the disper-
sive errors at a given discretization (Al/X) averaged over all
directions of propagation. Therefore, F; does not provide in-
formation regarding the anisotropy of the model. This measure
is perhaps more relevant for general problems (in which wave
propagation takes place in a variety of different directions)
rather than investigating the propagation characteristics for
specific directions of propagation. Also, note the normalization
factor and the upper limit of the summation can be reduced
from 360° to 90° due to the rotational symmetry of the models
considered in this paper.

In Fig. 4, the values of Fy are provided for the original
and fourth-order models versus Al/A. This figure indicates
that for Al/\ < 0.1875 the original algorithm possesses a
slightly lower value of E; than the fourth-order algorithm.
This unexpected result is due to the perfect propagation that
occurs in the original algorithm for propagation diagonally
through the mesh. In Fig. 5, the best and worst case values
of |(v*/v) — 1| are provided versus Al/A. The value for
FE4 can be approximately considered as the average between
these minimum and maximum values of |(v*/v) — 1|. Fig. 5
indicates that the maximum value of |(v*/v) — 1| for the
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Fig. 4. Error Ey versus Al/ X for the original and fourth-order TLM models
(both algorithms operated at their respective stability limits).
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Fig. 5. Minimum and maximum values for [(v* /v)—1]| versus Al/X for the
original and fourth-order TLM models. The minimum and maximum values of
|(v*/v) — 1] for the original algorithm occur for propagation in the ¢ = 45°
and ¢ = 0° directions. The minimum and maximum values of |(v* /v)—1| for
the fourth-order algorithm occur for propagation in the ¢ = 0° and ¢ = 45°
directions.

original model (which occurs for propagation along one of
the coordinate directions) is larger than the maximum value
for the fourth-order algorithm (which occurs for propagation
diagonally through the mesh). However, the minimum value
of |(v*/v) — 1| for the original algorithm is zero (because
this algorithm provides dispersionless propagation with infinite
cut-off for ¢ = 45°), and therefore superior to the direction
with the minimum value of |(v*/v) — 1| for the fourth-
order algorithm. Since F4 is approximately the average of the
minimum and maximum values of |(v*/v) — 1], Figs. 4 and 5
indicate that the original algorithm is slightly better than the
fourth-order algorithm for Al/X\ < 0.1875. The fourth-order
algorithm is superior for Al/X\ < 0.1875.

In Fig. 6, the values of F; for the original and fourth-order
algorithms are compared for the case of modelling a dielectric
material of e,, = 4. These results indicate superior performance
of the fourth-order algorithm. In fact, for increasing values of
&r, the dispersive errors of the fourth-order algorithm decrease
(for small values of Al/A). In Fig. 7, Ey4 is provided versus
Al/Xg for e, = 1, 2, 10, and 25. The results of this figure
indicate that for typical practical discretizations Al/A < 0.10
the value of Fy decreases with increasing ,.. This aspect of the
behavior of the fourth-order model is distinct from the second-
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Fig. 6. Error Eq versus Al/\ for the original and fourth-order TLM models
for the case of modelling a dielectric material of ¢, = 4.

order models. In the equivalent finite-difference algorithms, the
effect of increasing ¢, is equivalent to decreasing the Courant
number. For the second-order algorithms, it is always desirable
to run simulations at (or very close to) the Courant number,
where the optimal propagation characteristics are obtained.
This is not the case for the fourth-order algorithm presented in
this paper. For this reason it may be desirable to renormalize
the algorithm for a value of Yy > 4/15 to represent a free-
space medium such that the optimal propagation characteristics
of the fourth-order algorithm can be exploited.

In Fig. 8 the propagation characteristics of the original
TLM model [7] and the spatially fourth-order model are
compared for propagation along a coordinate direction in a
medium with €, = 10. These curves indicate the superior
performance of the fourth-order algorithm for the modelling
of dielectric media (for a specific direction of propagation).
The results indicate the fourth-order algorithm produces less
than one percent velocity error for Al/A < 0.2. Velocity errors
compound for waves which propagate over electrically large
distances due to phase errors, which increase linearly with the
distance travelled. Therefore, the potential benefits of fourth-
order algorithms may become important for the analysis of
electrically large problems.

V. IMPLEMENTATION—SCATTERING AND TRANSFER EVENTS

TLM algorithms operate by simulating the progression
of voltage pulses as they are scattered through the mesh
of transmission lines. The implementation of the spatially
fourth-order model follows the same procedure as all other
TLM models, i.e., scattering of incident voltage pulses at the
junction of transmission lines and the transfer of reflected
voltage pulses to adjacent nodes [1], [2].

The nodal scattering matrix for the spatially fourth-order
TLM model is assembled by examining the reflection and
transmission coefficients of a voltage pulse on each of the
ten elemental transmission lines. For example, a voltage pulse
approaching the transmission-line junction on branch 1 (a
Z; transmission-line) sees a parallel connection of three Z;
lines, four —167; lines, one 7;/Y; line, and one —167;/Y;
line. The corresponding reflection coefficient (describing the
magnitude of the voltage pulse reflected from the transmission-
line junction back onto line 1) is,

0.05 FOURTH-ORDER ¢, = 1
------ FOURTH-ORDER ¢, =2
----- FOURTH-ORDER ¢, = 10
- - - - FOURTH-ORDER ¢ =25
004
.
0.03 |
©
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0 00375 0075 0.1125 0.15 01875 0225  0.2625 0.3

Discretization Al/ )

Fig. 7. Emor E; versus Al/ X for the fourth-order TLM model for modelling
a dielectric material of ¢ = 1,2,10, and 25.
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Fig. 8. Velocity error v* /v versus Al/ ) for the original model [7] and the
spatially fourth-order model for propagation along a coordinate direction in
a medium & = 10.
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The corresponding transfer coefficient (describing the mag-
nitude of the voltage pulse transmitted to the other nine
transmission-line branches) is,

32
60 + 15Y,
Following the above procedure, the complete nodal scattering
matrix can be assembled:

T=1+4T1-=

[ v] W @ b b b d d d d foR][v]
vh b a b b d d d d f hi|v
v b b abddddf h||
vy b b b a dddd f h||v
vEl _|b b b b c ddd f oh||v
vg | |6 b b b dc d d f oh||uf
vy b b b b ddc d f h v%
vg b b b b ddd c f hi||vg
vy b b b b dddde h||v

LvTp b b b b d d d d f gl
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where

28+ 15Y
T 60+ 15Y,
32

T 60 + 15Y;
62+ 15Y,
60+ 15Y,

d=-—2
60 + 15Y,

_ 17Y, — 60
©T 60+ 15Y,
R
/= 60 + 15Y,
60+ 17Y
= 760+ 15Y,
_ 2Y,
60+ 15Y,

The transfer event for the fourth-order model is:

vs(4,5) = vi(i — 1,5)
va(i,7) = v3(i + 1,5)
vg (i, §) = v(i — 2,5)
(i, 7) = vg(i +2,5)
vio(i, 5) = vio(3, )

vi(i,7) = v3(i,5 — 1)
v3(i,4) = vi (6,5 +1)
1}%(27]) = U?(Za] - 2)
vy(1,5) = v5 (i, +2)
vg(t,) = v5(2,4)

where (%,7) denote discrete (z,y) coordinates.

In Section II it was noted that increasing the spatial accuracy
from second- to fourth-order did not require an increase in
memory storage requirements for the finite-difference algo-
rithm. This is not true for the TLM model. The fourth-order
TLM model requires twice the memory storage of the second-
order TLM model. For both the fourth-order TLM and finite-
difference algorithms, increasing the spatial accuracy from
second to fourth-order requires more computation per time
step.

The performance and stability of the spatially fourth-order
model has been verified for various wave propagation prob-
lems. In Fig. 9, the improved propagation characteristics of
the spatially fourth-order model are demonstrated. The fourth-
order model and the original TLM model [7] are applied to
the simulation of a Gaussian-pulsed plane wave. An effective
one-dimensional simulation in the x direction is created by
applying magnetic walls along the minimum and maximum
y boundaries. The fourth-order model preserves the shape of
the pulse more accurately than the original model. As well,
the fundamental difference in the propagation characteristics
provided in Fig. 3 is evident. The Gaussian pulse contains
significant energy from Al/A =0 to approximately 0.250.
The dispersion caused by the original model is evident in the
trailing edge of the pulse (i.e., certain components of the wave
propagate too slow). The dispersion caused by the fourth-order
model is evident in the leading edge of the pulse (i.e., certain
components of the wave propagate too fast). This example
illustrates the behavior described in Fig. 3.

In Fig. 10, the improved propagation characteristics of the
fourth-order model for modelling dielectric media are demon-
strated. The original and fourth-order models are applied to the
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Fig. 10. 'Simulation of a Gaussian-pulsed plane wave in a medium with
& = 10 by a mesh of original nodes [7], and a mesh of spatially fourth-order
nodes.

simulation of a Gaussian-pulse plane wave in a medium with
e, = 10. The results indicate the superior performance of the
fourth-order model. The waveform is significantly distorted
by the original model and only slightly distorted by the
fourth-order model. The simulated results of Fig. 10 verify
the behavior displayed in Fig. 8.

VI. COMPUTATIONAL EFFICIENCY

The dispersive analysis presented in Section IV, and the one-
dimensional propagation examples provided in the previous
section indicate the superior accuracy of the new fourth-order
model. These examples do not, however, demonstrate the com-
putational advantage of the new model in terms of cpu time or
memory storage. In this section, the improved computational
performance of the fourth-order model is demonstrated by
example.

As mentioned, the computational advantage of the new
fourth-order model is a decrease in dispersive errors. However,
the fourth-order model also possesses three computational
disadvantages. The first computational disadvantage is the
increased memory storage per cell. In Section V it was noted
that the fourth-order TLM model requires double the memory
storage of the original algorithm per cell. The second com-
putational disadvantage is the increased computation required
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per cell, due to increased algorithmic complexity (more mul-
tiplications and additions). Our simulations indicate that the
new fourth-order model requires approximately 2.5 times more
cpu time per cell as compared to the original model (a similar
comparison for the equivalent finite-difference algorithms has
not been performed). The third computational disadvantage
is that the fourth-order model possesses a smaller maximum
allowable time step (see (8) and (9)) as compared to the
original model [7]. Therefore, more time steps are required
to achieve the same effective duration of computation. The
following examples illustrate that the computational advantage
of increased accuracy allows for sufficiently coarse discretiza-
tion such that the three computational disadvantages discussed
above are offset.

Consider an arbitrary two-dimensional problem of a given
spatial size that requires simulation for a given duration
of time. In this example, the suggestion made in Section
IV is followed, and the free space region is normalized to
possess a stub value of Yy = 13.067 (which would usually
correspond to a relative permittivity e, =4.0, see (10)). This
specific renormalization value is selected as an example and
should not be considered as optimal. For this stub value, the
maximum allowable time step permitted by the fourth-order
model is 2.31 times smaller than that permitted by the original
model operated at the upper limit of stability. Consider the
operation of the second-order algorithm such that the spatial
discretization (for the highest desired output frequency) is 15
Al/X. For this discretization, the original model provides an
FE; value of 0.1845. To obtain the same value of Ey, the
new fourth-order algorithm requires a discretization of only
5.64Al/ ). For a two-dimensional region, the original mode}
requires (15.0/5.64)? = 7.07 times more cells to achieve the
same accuracy. Taking into account that the fourth-order model
requires twice as much memory storage, the new fourth-order
model requires 3.5 times less memory than the second-order
algorithm. In terms of cpu time, taking into account that the
fourth-order algorithm requires 2.31 x 2.5 = 5.8 times more
cpu time per cell (due to the restricted At requirement and the
increase in algorithmic complexity), the fourth-order algorithm
requires approximately 1.2 times less cpu time than the second-
order algorithm. Only a slight advantage is realized for this
example in terms of cpu time, but a significant advantage in
memory storage.

Now consider a problem involving a free-space region and
a dielectric region with €, =10. The same order of accuracy
is desired in the dielectric region as was obtained in the
free-space region of the above problem (ie., By =0.1845).
To achieve this accuracy within the dielectric medium with
the original model requires a discretization 24.9 Al/A. To
achieve the same accuracy, the fourth-order algorithm re-
quires a discretization of 6.98 Al/X. Over a two-dimensional
region 12.7 times more cells are required by the second-
order algorithm to achieve the same accuracy provided by the
fourth-order algorithm. Therefore, the fourth-order algorithm
requires 6.4 times less memory and 2.2 times less cpu time
than the second-order algorithm for equivalent accuracy. Both
examples indicate a computational advantage provided by the
new fourth-order model.

VII. DISCUSSION/ CONCLUSION

In this paper a spatially fourth-order version of the original
two-dimensional TLM algorithm has been presented. The
fundamental accuracy of the spatial approximation has been
increased from second to fourth-order. The same improvement
is possible for the hexagonal [4] and spatially weighted TLM
models [5] to obtain spatially fourth-order versions. The
accuracy of the temporal discretization remains second-order.
The concept of a stability criteria has been introduced to the
TLM method and is based on the permissible values for the
stub admittance Yj.

As discussed in Section III, the fourth-order TLM model
is constructed with elemental transmission lines with nega-
tive characteristic impedances. Although physically unrealis-
tic, these negative impedance transmission lines are required
to obtain the appropriate weighting present in the equivalent
finite-difference algorithm. The negative impedance transmis-
sion lines could have been avoided through the use of bi-
directional impedance inverters (which would require infinite
bandwidth) to interface lines 1-4 and 9 with lines 5-8 and
10. The bi-directional impedance inverters would also be
physically unrealistic. These aspects of the fourth-order model
should not be a cause for concern since TLM models are used
as a simulation tool and their physical realizability is not an
issue.

Some unique properties of the fourth-order model have
emerged. For the modelling of dielectric material, the disper-
sive errors associated with the algorithm decrease for moderate
g, (also true for the equivalent finite-difference algorithm).
The improved dispersive properties of the fourth-order models
make them attractive candidates for the analysis of electrically
large (and inhomogeneous) problems.

REFERENCES

[11 W. I. R. Hoefer, “The transmission-line matrix method—Theory and
applications.” IEEE Trans. Microwave Theory Tech., vol. MTT-33. no.
10. pp. 882-893, Oct. 1985.

, “The transmission-line matrix (TLM) method,” in Numerical
Techniques for Microwave and Millimeter Wave Passive Structures, T.
Itoh, Ed. New York: Wiley, 1989.

[3] L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential
Egquations in Science and Engineerin. New York:Wiley, 1982.

[4] N.R. S. Simons and A. Sebak, “New transmission-line matrix node for
two-dimensional electromagnetic field problems,” Canadian J. Phys.,
vol. 69, no. 11, pp. 1388-1398, 1991.

, “Spatially weighted numerical models for the two-dimensional
wave equations: FD algorithm and synthesis of the equivalent TLM
model,” Int. J. Numerical Modelling, vol. 6, pp. 47-65, 1993.

{6] N.R.S. Simons and E. Bridges, ‘‘Equivalence of propagation character-
istics for the transmission-line matrix an finite-difference time-domain
methods in two dimensions,” IEEE Trans. Microwave Theory Tech., vol.
MTT-39, pp. 243-267, 1991.

[7]1 P. B. Johns and R. L. Beurle, “Numerical solution of two dimensional
scattering problems using a transmission line matrix,” Proc. Inst. Elec.
Eng., vol. 118, no. 9, pp. 1203-1208, Nov. 1971.

[8] J. Fang and K. K. Mei, “A higher order finite difference scheme for
the solution of Maxwell’s Equaticns in the time domain,” inProc. 1989
URSI Radio Science Meeting, San Jose, CA. 1989.

[9] T.Deveze, L. Beaulieu, and W. Tabbara, “A fourth order scheme for the

FDTD algorithm applied to Maxwell’s equations,” in Proc. 1993 IEEE

AP-S Int. Symp., 1992, Chicago IL, pp. 346-349.

R. Vichnevetsky and J. B. Bowles, Fourier Analysis of Numerical

Approximations of Hyperbolic Equations. Philadelphia: SIAM, 1982.

{11] G. O. O'Brien, M. A. Hyman, and S. Kaplan, “A study of the numerical

solution of partial differential equations,” J. Mathemat. Phys., vol. 29,
p. 223, 1950.

[2]

(5]

[10]



444

[12]

[13]

[14]

(15]

[16]

[17]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 2, FEBRUARY 1995

K. S. Yee, “Numerical solution of initial boundary value problems in-
volving Maxwell’s Equations in isotropic media,” IEEE Trans. Antennas
Propagat., vol. AP-14, no. 3, pp. 302-307, May 1966.

A. Taflove and K. R. Umashankar, “Review of FD-TD numerical
modelling of electromagnetic wave scattering and radar cross section,”
Proc. IEEE, vol. 77, no. 5, pp. 682-699, May 1989.

C. R. Brewitt-Taylor and P. B. Johns, “On the construction an numerical
solution of transmission-line and lumped network models of Maxwell’s
Equations,” Int. J. Numerical Methods in Engineering, vol. 15, pp.
13-30, 1980.

P. B. Johns, “On the relationship between TLM and finite-difference
methods for Maxwell’s Equations,” IEEE Trans. Microwave Theory
Tech., vol. MTT-35, no. 1, pp. 60-61, 1987.

N. R. S. Simons, “Application of the TLM method to open region field
problems,” M.Sc. thesis, University of Manitoba, 1990.

Z. Chen, M. M. Ney, and W. J. R. Hoefer, “A new finite-difference
time-domain formulation and its equivalence with the TLM Symmetric
condensed node,” IEEE Trans. Microwave Theory Tech., vol. MTT-39,
pp- 2160-2169, 1991, and, M. Celuch-Marcysiak and W. K. Gwarek,
Comments on “A new finite-difference time-domain formulation and its
equivalence with the TLM symmetrical condensed node,” IEEE Trans.
Microwave Theory Tech., vol. MTT-41, no. 1, pp. 168-172, Jan. 1993.

Neil R. 8. Simons received the B.Sc. degree (with
distinction) and M.Sc. degree from the University
of Manitoba, Winnipeg, MB, Canada, in 1987 and
1990, respectively, both in electrical engineering.
From 1987 to 1989 he was with Quantic Labora-
tories, Winnipeg, working on problems related to
transmission-line effects on printed circuit boards.
He is currently a Ph.D. student at the University of
Manitoba, and is also employed with InfoMagnetics
Technologies Corporation, Winnipeg. His primary
research interst is the numerical solution of electro-

magnetic field problems.

Abdel-Razik Sebak (5°81-M’84-SM’92) received
the B.Sc. degree (with Honors) in electrical en-
gineering from Cairo University, Bgypt, in 1976
and the B.Sc. degree in applied mathematics from
Ein Shams University, Egypt, in 1978. He received
the M.Eng. and Ph.D. degrees from the University
of Manitoba, Winnipeg, MB, Canada, in 1982 and
1984, respectively, both in electrical engineering.

From 1984 to 1986, he was with the Canadian
Marconi Company, Kanata, Ontario, working on the
design of microstrip phased array antennas. He is
currently an associate professor of electrical and computer engineering, the
University of Manitoba. His current research interests include computational
electromagnetics, integrated antennas, electromagnetic theory, detection of
subsurface conducting objects and electromagnetic interference.

Dr. Sebak received the 1992 University of Manitoba Merit Award for
outstanding Teaching and Research. He has served as Chairman (1991-92)
of the joint IEEE AP/MTT/VT Winnipeg Chapter. He received, as Chapter
Chairman, the 1992 IEEE Antennas and Propagation Society Best Chapter
Award.




